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C. Avila,7 F. Badaud,12 A. Baden,58 B. Baldin,48 P. W. Balm,32 S. Banerjee,28 E. Barberis,60 P. Bargassa,75 P. Baringer,55

C. Barnes,41 J. Barreto,2 J. F. Bartlett,48 U. Bassler,16 D. Bauer,52 A. Bean,55 S. Beauceron,16 M. Begel,67 A. Bellavance,64

S. B. Beri,26 G. Bernardi,16 R. Bernhard,48,* I. Bertram,40 M. Besançon,17 R. Beuselinck,41 V. A. Bezzubov,37 P. C. Bhat,48
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We report on a search for pair production of first-generation scalar leptoquarks (LQ) in p �p collisions at
���

s
p

� 1:96 TeV using an integrated luminosity of 252 pb�1 collected at the Fermilab Tevatron collider by
the D0 detector. We observe no evidence for LQ production in the topologies arising from LQLQ ! eqeq
and LQLQ ! eq�q, and derive 95% C.L. lower limits on the LQ mass as a function of �, where � is the
branching fraction for LQ ! eq. The limits are 241 and 218 GeV=c2 for � � 1 and 0.5, respectively.
These results are combined with those obtained by D0 at

���

s
p

� 1:8 TeV, which increases these LQ mass
limits to 256 and 234 GeV=c2.

DOI: 10.1103/PhysRevD.71.071104 PACS numbers: 14.80.2j, 13.85.Rm
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FIG. 1. The ST distributions for the eejj events (a) and e�jj
events (b) from data (triangles) compared to the SM background
(solid histograms). The dot-dashed histograms are the expected
distributions for a 240 GeV=c2 LQ signal (a) and for a
200 GeV=c2 LQ signal (b).
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Several extensions of the standard model (SM) include
leptoquarks (LQ) which carry color, fractional electric
charge, and both lepton (l) and quark (q) quantum numbers
and would decay into a lepton and a quark [1]. The H1 and
ZEUS experiments at the e�p collider HERA at DESY
published [2] lower limits on the mass of a first-generation
LQ that depend on the unknown leptoquark-l-q Yukawa
coupling �. At the CERN LEP collider, pair production of
leptoquarks could occur in e�e� collisions via a virtual �
or Z boson in the s channel. At the Fermilab Tevatron
collider, leptoquarks would be pair produced dominantly
through q �q annihilation (for MLQ > 100 GeV=c2) and
gluon fusion. Such pair production mechanisms are inde-
pendent of the coupling �. Experiments at the LEP collider
[3] and at the Fermilab Tevatron collider [4–6] set lower
limits on the masses of leptoquarks. In this letter, we
present a search for first-generation scalar leptoquark pairs
produced in p �p collisions at

���

s
p

� 1:96TeV for two cases:
when both leptoquarks decay to an electron and a quark
with a branching fraction (Br) �2, where � is the lepto-
quark branching fraction into an electron and a quark, and
when one of the leptoquarks decays to an electron and
a quark and the other to a neutrino and a quark with
Br � 2��1� ��. The final states consist of two electrons
and two jets (eejj) or of an electron, two jets, and missing
transverse energy corresponding to the neutrino which
escapes detection (e�jj).

The D0 detector [7] comprises three main elements. A
magnetic central-tracking system, which consists of a sili-
con microstrip tracker and a central fiber tracker, is located
within a 2 T superconducting solenoidal magnet. Three
liquid-argon/uranium calorimeters, a central section (CC)
covering pseudorapidities � [8] with j�j up to 
 1 and two
end calorimeters (EC) extending coverage to j�j 
 4 [9],
are housed in separate cryostats. Scintillators between the
CC and EC cryostats provide a sampling of developing
showers for 1:1< j�j< 1:4. A muon system is located
outside the calorimeters.

The data used in this analysis were collected from April
2002 to March 2004. The integrated luminosity for this
data sample is 252� 16 pb�1. Events were required to
pass at least one of a set of electron triggers based on the
requirement of one electromagnetic trigger tower to be
above threshold and on shower shape conditions. The
efficiencies of the trigger combinations used in the eejj
and e�jj analyses have been measured using data. They
are �100% for two electrons of transverse energy (EEM

T )
above 25 GeV, and for one electron above 40 GeV. The
small loss of events due to the trigger inefficiencies for
EEM
T below 40 GeV is taken into account using proper

weighting for Monte Carlo (MC) events.
Electrons are reconstructed as calorimeter electromag-

netic (EM) clusters which match a track in the central-
tracking system. Electromagnetic clusters are identified by
the characteristics of their energy deposition in the calo-
071104
rimeter. Cuts are applied on the fraction of the energy in the
electromagnetic calorimeter and the isolation of the cluster
in the calorimeter. EM clusters are marked as tight when
they satisfy a shower shape condition and loose otherwise.
Jets are reconstructed using the iterative, midpoint cone
algorithm [10] with a cone size of 0.5. The energy mea-
surement of the jets has been calibrated as a function of the
jet transverse energy and � by balancing energy in photon
plus jet events. The missing transverse energy (E6 T) is
calculated as the vector sum of the transverse energies in
the calorimeter cells, removing contributions from detector
noise.

For both channels, the background arising from multijet
events is determined from a sample of data events (QCD
sample) that satisfy the main cuts used in the analysis
except that each EM cluster is loose instead of tight. A
QCD normalization factor is extracted for this sample in a
part of the phase space where the LQ contribution is
expected to be negligible. The QCD sample normalized
by this factor is used to derive the multijet contribution in
the relevant part of the phase space. To evaluate the Z
boson/Drell-Yan (Z=DY) and the W boson background
contributions, samples of MC events generated with
ALPGEN [11] or PYTHIA [12] were used. Samples of
PYTHIA t�t events (mt � 175 GeV=c2) were used to calcu-
late the top quark background. LQLQ ! eejj and
LQLQ ! e�jj MC samples were generated using
PYTHIA for LQ masses from 120 to 280 GeV=c2 in steps
of 20 GeV=c2. All MC events were processed using a full
simulation of the detector based on GEANT [13] and the
complete event reconstruction. The efficiencies of the vari-
ous cuts, measured using the data, were taken into account
using proper weightings of the MC events.

The eejj analysis requires two tight EM clusters with
EEM
T > 25 GeV and at least two jets with ET > 20 GeV

within j�j< 2:4. At least one of the EM clusters should
spatially match an isolated track and at least one should be
in the CC fiducial region. The major SM background
sources that mimic the eejj decay of a LQ pair are multijet
events (where two of the jets are misidentified as EM
objects), Z=DY production, and top-quark-pair production.
-4



TABLE II. Number of events in data compared with back-
ground expectation at different stages of the eejj analysis.

eejj Z boson veto ST > 450 GeV

Data 467 95 1
Total background 406� 100 92� 17 0:54� 0:11
Z=DY� jets 342� 99 41� 11 0:22� 0:07
Multijet 59� 16 47� 13 0:27� 0:08
t�t production 4:7� 0:4 3:8� 0:3 0:05� 0:01

TABLE I. Efficiencies after all cuts and 95% C.L. upper limits
on production cross section  branching fraction Br, as a
function of MLQ, for the two channels.

eejj e�jj
MLQ (GeV=c2) � (%) � Br (pb) � (%) � Br (pb)

120 2:2� 0:5 0.950 4:6� 0:5 0.34
140 4:5� 0:9 0.444 7:9� 0:8 0.20
160 8:9� 1:7 0.223 11:7� 1:1 0.14
180 12:6� 2:4 0.156 15:5� 1:5 0.10
200 18:5� 3:0 0.102 17:8� 1:7 0.088
220 24:6� 3:5 0.075 18:9� 1:8 0.083
240 30:3� 3:9 0.060 20:9� 1:9 0.075
260 34:0� 4:0 0.053 21:9� 2:1 0.071
280 36:0� 4:0 0.050 22:7� 2:1 0.069
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To suppress background from Z boson production, events
with a dielectron mass (M2EM) compatible with the Z
boson mass (80<M2EM < 102 GeV=c2) are rejected.
Finally ST > 450 GeV is also required, where ST is the
scalar sum of the transverse energies of the two electrons
and the two leading jets. In Fig. 1(a), the ST distributions
for data and background after applying the Z boson mass
cut are shown. This choice of the cutoff has been optimized
using MC signal and background events to get the best
expected mass limit. The total efficiencies for a LQ signal
are summarized in Table I. The multijet background is
estimated from two samples of events with two EM clus-
ters EEM

T > 15 GeV which have at least one matched track
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FIG. 2. The 95% C.L. limit on the experimental cross section tim
eejj (a) and e�jj (b) channels. The NLO theoretical cross sections
factor: MLQ (full line), MLQ=2 (dotted curve) and 2MLQ (dashed cu
241 GeV=c2 (a) and of 208 GeV=c2 (b) for first-generation scalar l
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and no reconstructed jets. Both EM clusters are tight in one
sample and loose in the other. The QCD normalization
factor is determined by the normalization of the M2EM

distributions of the two samples below 75 GeV=c2. The
Z=DY and top quark contributions are normalized to the
integrated luminosity. Table II lists the number of events in
the data and the number of expected events from SM
background sources.

Systematic uncertainties on the background are deter-
mined to be 15% from the QCD normalization factor and
6% from the efficiencies of the identification of electrons
and jets (particle ID). An uncertainty (26%) from the jet
energy scale is determined by varying the correction factor
on the calorimeter response to jets by 1 standard deviation.
A systematic uncertainty on the Z=DY background (20%)
is calculated by taking into account the differences be-
tween the two Z=DY MC samples. On the signal, the
particle ID and the limited statistics of the MC sample
correspond to systematic uncertainties of 6% and 1.2%,
respectively. Comparing acceptances for the signal
samples generated with PYTHIA using different parametri-
zations of parton distribution functions (PDFs) leads to an
uncertainty of 5%. The uncertainty due to the jet energy
scale is dependent on the LQ mass (7.3% for a LQ mass of
240 GeV=c2). The total uncertainty on the efficiency is
(17–9)% in the mass range 180–280 GeV=c2.

The data are consistent with the expected SM back-
ground and no evidence for leptoquark production is ob-
served in the eejj channel. Thus we can set an upper limit
at the 95% C.L. on the LQ pair production cross section
using a Bayesian approach [14]. The limits are tabulated in
Table I and shown in Fig. 2(a) as a function of LQ mass. To
compare our experimental results with theory, we use the
next-to-leading order (NLO) cross section for scalar lep-
toquark pair production from Ref. [15], with the CTEQ6
PDF [16]. The theoretical uncertainties correspond to the
variation from MLQ=2 to 2MLQ of the renormalization
scale � used in the calculation and to the errors on the
PDFs. To set a limit on the LQ mass we compare
our experimental limit to the theoretical cross section for
)
2

Scalar Leptoquark Mass   (GeV/c
120 140 160 180 200 220 240 260 280

) 
(p

b
)

β
(1

-
β

 2×
C

ro
ss

 S
ec

ti
o

n
 

10
-1

1 jjνe
95σ

NLO Theory

 = 0.5β 

-1DØ  252pb

(b)

es branching fraction as a function of LQ mass (circles) for the
[15] are plotted for different values of the renormalization scale
rve) taking into account the PDF uncertainties. A mass limit of
eptoquarks is obtained for � � 1 and � � 0:5, respectively.
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� � 2MLQ, which is conservative as it corresponds to the
lower value of the theoretical cross section. The value of
the theoretical cross section would increase by �7% if the
PDF errors were neglected. A lower limit on the leptoquark
mass of 241 GeV=c2 is obtained for � � 1.

The e�jj analysis requires exactly one tight EM cluster
(EEM

T > 35 GeV) in the CC fiducial region which matches
an isolated track spatially and kinematically. At least two
jets with ET > 25 GeV within j�j< 2:4 and E6 T > 30 GeV
are required. The main SM background sources which
would mimic the e�jj decay of a LQ pair are events
with multijet production (where a jet is reconstructed as
an electron and the E6 T comes from jet mismeasurements),
W � 2 jets events, and top-quark-pair production. A veto
on muons with pT > 10 GeV=c is applied to reduce the
dilepton background from t�t decays. A cut on the invariant
transverse mass of the electron and the missing energy
(Me�

T > 130 GeV=c2) is applied to reduce the W boson
background. Finally ST > 330 GeV is required, where
here ST is the sum of the transverse energies of the elec-
tron, the two jets, and the E6 T . The distribution of the
variable ST for the data and the total background is shown
in Fig. 1(b) after applying the Me�

T cut. The choice of the
cutoff has been optimized as above. The total efficiency of
these cuts for a LQ signal is given in Table I. To determine
the multijet background we use a data sample that passed
all the preceding cuts but with a loose EM cluster spatially
matching a track. The QCD normalization factor is deter-
mined using the ratio of the number of events with E6 T <
10 GeV in this and in the search samples. The W boson
background is normalized to the data at transverse mass
60<Me�

T < 100 GeV=c2. The top quark background is
normalized to the integrated luminosity using the NNLO
theoretical cross section. The number of events which
survive the cuts and the number of predicted background
events are summarized in Table III.

Systematic uncertainties associated with the QCD nor-
malization factor (9%) and W boson normalization factor
(5.7%) are determined by the limited statistics of the
samples and the choice of kinematical domain over which
the normalization is done. The jet energy scale uncertainty
introduces uncertainties equal to 25% for W boson pro-
duction and 8.5% for the top-quark-pair production. For the
W boson background an uncertainty equal to 33% is asso-
TABLE III. Number of events in data compared with back-
ground expectation at different stages of the e�jj analysis. The
values of the cuts are in GeV or in GeV=c2.

E6 T > 30 Me�
T > 130 ST > 330

Data 900 14 1
Total background 902� 211 13:9� 4:4 3:6� 1:2
W � jets 811� 211 10:0� 4:4 2:2� 1:2
Multijet 76� 7 2:3� 0:5 0:72� 0:28
t�t production 14:7� 2:9 1:6� 0:37 0:70� 0:17
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ciated with the shape of the E6 T distribution. A 25% error
has been included as systematic uncertainty on the top
quark cross section. Finally, there is an uncertainty of
3.8% on the particle-ID acceptance. Three systematic
uncertainties are determined on the signal acceptance:
3.8% comes from the uncertainty on the particle ID, 5%
is due to the jet energy scale uncertainty, and 5.4% corre-
sponds to the acceptance variations for different PDF
parametrizations.

As no excess of data over background is found in the
e�jj channel, an upper limit on the production cross
section for a first-generation scalar leptoquark is derived
and shown in Fig. 2(b) and in Table I. A comparison of
these limits to theoretical calculations of the cross section
[15], performed as described above, gives a lower limit on
the first-generation scalar LQ mass of 208 GeV=c2 for
� � 0:5.

A combination of the limits obtained in the searches in
the eejj and e�jj channels is done using a Bayesian like-
lihood technique [17], with correlated uncertainties taken
into account. The limits on the cross sections obtained at
the 95% C.L. for the combination of the two channels and
different values of � are compared with the NLO LQ pair
production cross section [15] and lower mass limits are
derived and given, as a function of �, in Table IV and
shown in Fig. 3. In Table IV are also shown the run I mass
limits based on an integrated luminosity �120 pb�1 ob-
tained by D0 [4], using the three channels eejj, e�jj
and ��jj, and CDF [5] (eejj channel). This analysis
sets a 95% C.L. limit on the first-generation leptoquark
mass of MLQ > 218 GeV=c2 for � � 0:5, and MLQ >
241 GeV=c2 for � � 1. The D0 run II and run I results
are combined, using the same method, and the results are
shown in Table IVand in Fig. 3. The 95% C.L. limits on the
first-generation leptoquark mass are MLQ > 234 GeV=c2

for � � 0:5, and MLQ > 256 GeV=c2 for � � 1.
FIG. 3. Excluded regions (shaded area) at the 95% C.L. in the
� versus LQ mass plane for the production of first-generation
scalar leptoquarks.
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TABLE IV. 95% C.L. lower limits on the first-generation
scalar leptoquark mass (in GeV=c2), as a function of �. The
mass limits from D0 (eejj, e�jj and ��jj combined) [4] and
CDF (eejj) [5] at run I ( � 120 pb�1) are also given, as well as
the limits obtained by combining the D0 run I and run II results.

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

eejj 158 180 203 220 232 241
e�jj 169 193 203 207 208 207 203 193 169
D0 run II 169 193 204 212 218 223 228 232 237 241
D0 run I 110 204 225
D0 runs I & II 183 206 218 227 234 239 244 248 252 256
CDF run I 213
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[12] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[13] R. Brun and F. Carminati, CERN Program Library Long

Writeup No. W5013, 1993.
[14] I. Bertram et al., Fermilab Report No. TM-2104, 1998.
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